aboutsummaryrefslogtreecommitdiff
path: root/src/ui/fft.c
diff options
context:
space:
mode:
authorvovanec <vovanec@90c681e8-e032-0410-971d-27865f9a5e38>2008-02-07 13:36:34 +0000
committervovanec <vovanec@90c681e8-e032-0410-971d-27865f9a5e38>2008-02-07 13:36:34 +0000
commit06d1877811fa6aa97dddc0e03bcde4e766928c87 (patch)
treec25462d0e58c3d58c728664440412bf4f16a49ec /src/ui/fft.c
parent3f6b60f23c44a8ba8dd97ca6f41a16e2af7ef2f7 (diff)
downloadqmmp-06d1877811fa6aa97dddc0e03bcde4e766928c87.tar.gz
qmmp-06d1877811fa6aa97dddc0e03bcde4e766928c87.tar.bz2
qmmp-06d1877811fa6aa97dddc0e03bcde4e766928c87.zip
new directory structure
git-svn-id: http://svn.code.sf.net/p/qmmp-dev/code/trunk/qmmp@232 90c681e8-e032-0410-971d-27865f9a5e38
Diffstat (limited to 'src/ui/fft.c')
-rw-r--r--src/ui/fft.c296
1 files changed, 296 insertions, 0 deletions
diff --git a/src/ui/fft.c b/src/ui/fft.c
new file mode 100644
index 000000000..7ca1978a5
--- /dev/null
+++ b/src/ui/fft.c
@@ -0,0 +1,296 @@
+/* fft.c: Iterative implementation of a FFT
+ * Copyright (C) 1999 Richard Boulton <richard@tartarus.org>
+ * Convolution stuff by Ralph Loader <suckfish@ihug.co.nz>
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation; either version 2 of the License, or
+ * (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, write to the Free Software
+ * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
+ */
+
+/*
+ * TODO
+ * Remove compiling in of FFT_BUFFER_SIZE? (Might slow things down, but would
+ * be nice to be able to change size at runtime.)
+ * Finish making / checking thread-safety.
+ * More optimisations.
+ */
+
+#ifdef HAVE_CONFIG_H
+# include "config.h"
+#endif
+
+#include "fft.h"
+
+//#include <glib.h>
+#include <stdlib.h>
+#include <math.h>
+#ifndef PI
+#ifdef M_PI
+#define PI M_PI
+#else
+#define PI 3.14159265358979323846 /* pi */
+#endif
+#endif
+
+/* ########### */
+/* # Structs # */
+/* ########### */
+
+struct _struct_fft_state {
+ /* Temporary data stores to perform FFT in. */
+ float real[FFT_BUFFER_SIZE];
+ float imag[FFT_BUFFER_SIZE];
+};
+
+/* ############################# */
+/* # Local function prototypes # */
+/* ############################# */
+
+static void fft_prepare(const sound_sample * input, float *re, float *im);
+static void fft_calculate(float *re, float *im);
+static void fft_output(const float *re, const float *im, float *output);
+static int reverseBits(unsigned int initial);
+
+/* #################### */
+/* # Global variables # */
+/* #################### */
+
+/* Table to speed up bit reverse copy */
+static unsigned int bitReverse[FFT_BUFFER_SIZE];
+
+/* The next two tables could be made to use less space in memory, since they
+ * overlap hugely, but hey. */
+static float sintable[FFT_BUFFER_SIZE / 2];
+static float costable[FFT_BUFFER_SIZE / 2];
+
+/* ############################## */
+/* # Externally called routines # */
+/* ############################## */
+
+/* --------- */
+/* FFT stuff */
+/* --------- */
+
+/*
+ * Initialisation routine - sets up tables and space to work in.
+ * Returns a pointer to internal state, to be used when performing calls.
+ * On error, returns NULL.
+ * The pointer should be freed when it is finished with, by fft_close().
+ */
+fft_state *
+fft_init(void)
+{
+ fft_state *state;
+ unsigned int i;
+
+ state = (fft_state *) malloc(sizeof(fft_state));
+ if (!state)
+ return NULL;
+
+ for (i = 0; i < FFT_BUFFER_SIZE; i++) {
+ bitReverse[i] = reverseBits(i);
+ }
+ for (i = 0; i < FFT_BUFFER_SIZE / 2; i++) {
+ float j = 2 * PI * i / FFT_BUFFER_SIZE;
+ costable[i] = cos(j);
+ sintable[i] = sin(j);
+ }
+
+ return state;
+}
+
+/*
+ * Do all the steps of the FFT, taking as input sound data (as described in
+ * sound.h) and returning the intensities of each frequency as floats in the
+ * range 0 to ((FFT_BUFFER_SIZE / 2) * 32768) ^ 2
+ *
+ * FIXME - the above range assumes no frequencies present have an amplitude
+ * larger than that of the sample variation. But this is false: we could have
+ * a wave such that its maximums are always between samples, and it's just
+ * inside the representable range at the places samples get taken.
+ * Question: what _is_ the maximum value possible. Twice that value? Root
+ * two times that value? Hmmm. Think it depends on the frequency, too.
+ *
+ * The input array is assumed to have FFT_BUFFER_SIZE elements,
+ * and the output array is assumed to have (FFT_BUFFER_SIZE / 2 + 1) elements.
+ * state is a (non-NULL) pointer returned by fft_init.
+ */
+void
+fft_perform(const sound_sample * input, float *output, fft_state * state)
+{
+ /* Convert data from sound format to be ready for FFT */
+ fft_prepare(input, state->real, state->imag);
+
+ /* Do the actual FFT */
+ fft_calculate(state->real, state->imag);
+
+ /* Convert the FFT output into intensities */
+ fft_output(state->real, state->imag, output);
+}
+
+/*
+ * Free the state.
+ */
+void
+fft_close(fft_state * state)
+{
+ if (state)
+ free(state);
+}
+
+/* ########################### */
+/* # Locally called routines # */
+/* ########################### */
+
+/*
+ * Prepare data to perform an FFT on
+ */
+static void
+fft_prepare(const sound_sample * input, float *re, float *im)
+{
+ unsigned int i;
+ float *realptr = re;
+ float *imagptr = im;
+
+ /* Get input, in reverse bit order */
+ for (i = 0; i < FFT_BUFFER_SIZE; i++) {
+ *realptr++ = input[bitReverse[i]];
+ *imagptr++ = 0;
+ }
+}
+
+/*
+ * Take result of an FFT and calculate the intensities of each frequency
+ * Note: only produces half as many data points as the input had.
+ * This is roughly a consequence of the Nyquist sampling theorm thingy.
+ * (FIXME - make this comment better, and helpful.)
+ *
+ * The two divisions by 4 are also a consequence of this: the contributions
+ * returned for each frequency are split into two parts, one at i in the
+ * table, and the other at FFT_BUFFER_SIZE - i, except for i = 0 and
+ * FFT_BUFFER_SIZE which would otherwise get float (and then 4* when squared)
+ * the contributions.
+ */
+static void
+fft_output(const float *re, const float *im, float *output)
+{
+ float *outputptr = output;
+ const float *realptr = re;
+ const float *imagptr = im;
+ float *endptr = output + FFT_BUFFER_SIZE / 2;
+
+#ifdef DEBUG
+ unsigned int i, j;
+#endif
+
+ while (outputptr <= endptr) {
+ *outputptr = (*realptr * *realptr) + (*imagptr * *imagptr);
+ outputptr++;
+ realptr++;
+ imagptr++;
+ }
+ /* Do divisions to keep the constant and highest frequency terms in scale
+ * with the other terms. */
+ *output /= 4;
+ *endptr /= 4;
+
+#ifdef DEBUG
+ printf("Recalculated input:\n");
+ for (i = 0; i < FFT_BUFFER_SIZE; i++) {
+ float val_real = 0;
+ float val_imag = 0;
+ for (j = 0; j < FFT_BUFFER_SIZE; j++) {
+ float fact_real = cos(-2 * j * i * PI / FFT_BUFFER_SIZE);
+ float fact_imag = sin(-2 * j * i * PI / FFT_BUFFER_SIZE);
+ val_real += fact_real * re[j] - fact_imag * im[j];
+ val_imag += fact_real * im[j] + fact_imag * re[j];
+ }
+ printf("%5d = %8f + i * %8f\n", i,
+ val_real / FFT_BUFFER_SIZE, val_imag / FFT_BUFFER_SIZE);
+ }
+ printf("\n");
+#endif
+}
+
+/*
+ * Actually perform the FFT
+ */
+static void
+fft_calculate(float *re, float *im)
+{
+ unsigned int i, j, k;
+ unsigned int exchanges;
+ float fact_real, fact_imag;
+ float tmp_real, tmp_imag;
+ unsigned int factfact;
+
+ /* Set up some variables to reduce calculation in the loops */
+ exchanges = 1;
+ factfact = FFT_BUFFER_SIZE / 2;
+
+ /* Loop through the divide and conquer steps */
+ for (i = FFT_BUFFER_SIZE_LOG; i != 0; i--) {
+ /* In this step, we have 2 ^ (i - 1) exchange groups, each with
+ * 2 ^ (FFT_BUFFER_SIZE_LOG - i) exchanges
+ */
+ /* Loop through the exchanges in a group */
+ for (j = 0; j != exchanges; j++) {
+ /* Work out factor for this exchange
+ * factor ^ (exchanges) = -1
+ * So, real = cos(j * PI / exchanges),
+ * imag = sin(j * PI / exchanges)
+ */
+ fact_real = costable[j * factfact];
+ fact_imag = sintable[j * factfact];
+
+ /* Loop through all the exchange groups */
+ for (k = j; k < FFT_BUFFER_SIZE; k += exchanges << 1) {
+ int k1 = k + exchanges;
+ /* newval[k] := val[k] + factor * val[k1]
+ * newval[k1] := val[k] - factor * val[k1]
+ **/
+#ifdef DEBUG
+ printf("%d %d %d\n", i, j, k);
+ printf("Exchange %d with %d\n", k, k1);
+ printf("Factor %9f + i * %8f\n", fact_real, fact_imag);
+#endif
+ /* FIXME - potential scope for more optimization here? */
+ tmp_real = fact_real * re[k1] - fact_imag * im[k1];
+ tmp_imag = fact_real * im[k1] + fact_imag * re[k1];
+ re[k1] = re[k] - tmp_real;
+ im[k1] = im[k] - tmp_imag;
+ re[k] += tmp_real;
+ im[k] += tmp_imag;
+#ifdef DEBUG
+ for (k1 = 0; k1 < FFT_BUFFER_SIZE; k1++) {
+ printf("%5d = %8f + i * %8f\n", k1, real[k1], imag[k1]);
+ }
+#endif
+ }
+ }
+ exchanges <<= 1;
+ factfact >>= 1;
+ }
+}
+
+static int
+reverseBits(unsigned int initial)
+{
+ unsigned int reversed = 0, loop;
+ for (loop = 0; loop < FFT_BUFFER_SIZE_LOG; loop++) {
+ reversed <<= 1;
+ reversed += (initial & 1);
+ initial >>= 1;
+ }
+ return reversed;
+}