aboutsummaryrefslogtreecommitdiff
path: root/src/plugins/Effect/ladspa/ladspahost.cpp
Commit message (Expand)AuthorAgeFilesLines
* ladspa: added optimizationtrialuser022016-01-071-6/+4
* ladspa: fixed memory leaktrialuser022016-01-041-2/+1
* improved ladspa plugintrialuser022016-01-031-369/+272
* ladspa: removed RTLD_DEEPBIND usagetrialuser022016-01-021-2/+2
* ladspa: fixed multiband eq (1197) support (#416)trialuser022016-01-011-2/+2
* ported all effect pluginstrialuser022015-12-271-22/+19
* fixed gcc 4.7 warnings, replaced deprecated functionstrialuser022013-02-021-7/+0
* fixed FSF headerstrialuser022012-07-311-1/+1
* fixed FSF address (trunk)trialuser022012-07-311-1/+1
* updated yeartrialuser022012-01-191-1/+1
* ladspa plugin: added support for read-only optionstrialuser022011-03-021-1/+4
* some ladspa optimizationtrialuser022011-02-011-18/+14
* fixed ladspa plugintrialuser022010-04-181-3/+50
* updated audio enginetrialuser022010-01-161-2/+3
* enabled ladspa plugintrialuser022009-12-071-19/+36
* some ladspa plugin changestrialuser022009-12-071-0/+488
190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301
/* fft.c: Iterative implementation of a FFT
 * Copyright (C) 1999 Richard Boulton <richard@tartarus.org>
 * Convolution stuff by Ralph Loader <suckfish@ihug.co.nz>
 *
 *  This program is free software; you can redistribute it and/or modify
 *  it under the terms of the GNU General Public License as published by
 *  the Free Software Foundation; either version 2 of the License, or
 *  (at your option) any later version.
 *
 *  This program is distributed in the hope that it will be useful,
 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *  GNU General Public License for more details.
 *
 *  You should have received a copy of the GNU General Public License
 *  along with this program; if not, write to the Free Software
 *  Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA.
 */

/*
 * TODO
 * Remove compiling in of FFT_BUFFER_SIZE?  (Might slow things down, but would
 * be nice to be able to change size at runtime.)
 * Finish making / checking thread-safety.
 * More optimisations.
 */

/*
     modifications compared to original code:
     using float format for input data
*/

#ifdef HAVE_CONFIG_H
#  include "config.h"
#endif

#include "fft.h"

//#include <glib.h>
#include <stdlib.h>
#include <math.h>
#ifndef PI
#ifdef M_PI
#define PI M_PI
#else
#define PI            3.14159265358979323846    /* pi */
#endif
#endif

/* ########### */
/* # Structs # */
/* ########### */

struct _struct_fft_state {
    /* Temporary data stores to perform FFT in. */
    float real[FFT_BUFFER_SIZE];
    float imag[FFT_BUFFER_SIZE];
};

/* ############################# */
/* # Local function prototypes # */
/* ############################# */

static void fft_prepare(const float *input, float *re, float *im);
static void fft_calculate(float *re, float *im);
static void fft_output(const float *re, const float *im, float *output);
static int reverseBits(unsigned int initial);

/* #################### */
/* # Global variables # */
/* #################### */

/* Table to speed up bit reverse copy */
static unsigned int bitReverse[FFT_BUFFER_SIZE];

/* The next two tables could be made to use less space in memory, since they
 * overlap hugely, but hey. */
static float sintable[FFT_BUFFER_SIZE / 2];
static float costable[FFT_BUFFER_SIZE / 2];

/* ############################## */
/* # Externally called routines # */
/* ############################## */

/* --------- */
/* FFT stuff */
/* --------- */

/*
 * Initialisation routine - sets up tables and space to work in.
 * Returns a pointer to internal state, to be used when performing calls.
 * On error, returns NULL.
 * The pointer should be freed when it is finished with, by fft_close().
 */
fft_state *
fft_init(void)
{
    fft_state *state;
    unsigned int i;

    state = (fft_state *) malloc(sizeof(fft_state));
    if (!state)
        return NULL;

    for (i = 0; i < FFT_BUFFER_SIZE; i++) {
        bitReverse[i] = reverseBits(i);
    }
    for (i = 0; i < FFT_BUFFER_SIZE / 2; i++) {
        float j = 2 * PI * i / FFT_BUFFER_SIZE;
        costable[i] = cos(j);
        sintable[i] = sin(j);
    }

    return state;
}

/*
 * Do all the steps of the FFT, taking as input sound data (as described in
 * sound.h) and returning the intensities of each frequency as floats in the
 * range 0 to ((FFT_BUFFER_SIZE / 2) * 32768) ^ 2
 *
 * FIXME - the above range assumes no frequencies present have an amplitude
 * larger than that of the sample variation.  But this is false: we could have
 * a wave such that its maximums are always between samples, and it's just
 * inside the representable range at the places samples get taken.
 * Question: what _is_ the maximum value possible.  Twice that value?  Root
 * two times that value?  Hmmm.  Think it depends on the frequency, too.
 *
 * The input array is assumed to have FFT_BUFFER_SIZE elements,
 * and the output array is assumed to have (FFT_BUFFER_SIZE / 2 + 1) elements.
 * state is a (non-NULL) pointer returned by fft_init.
 */
void
fft_perform(const float *input, float *output, fft_state * state)
{
    /* Convert data from sound format to be ready for FFT */
    fft_prepare(input, state->real, state->imag);

    /* Do the actual FFT */
    fft_calculate(state->real, state->imag);

    /* Convert the FFT output into intensities */
    fft_output(state->real, state->imag, output);
}

/*
 * Free the state.
 */
void
fft_close(fft_state * state)
{
    if (state)
        free(state);
}

/* ########################### */
/* # Locally called routines # */
/* ########################### */

/*
 * Prepare data to perform an FFT on
 */
static void
fft_prepare(const float *input, float *re, float *im)
{
    unsigned int i;
    float *realptr = re;
    float *imagptr = im;

    /* Get input, in reverse bit order */
    for (i = 0; i < FFT_BUFFER_SIZE; i++) {
        *realptr++ = input[bitReverse[i]] * 32767.0;
        *imagptr++ = 0;
    }
}

/*
 * Take result of an FFT and calculate the intensities of each frequency
 * Note: only produces half as many data points as the input had.
 * This is roughly a consequence of the Nyquist sampling theorm thingy.
 * (FIXME - make this comment better, and helpful.)
 *
 * The two divisions by 4 are also a consequence of this: the contributions
 * returned for each frequency are split into two parts, one at i in the
 * table, and the other at FFT_BUFFER_SIZE - i, except for i = 0 and
 * FFT_BUFFER_SIZE which would otherwise get float (and then 4* when squared)
 * the contributions.
 */
static void
fft_output(const float *re, const float *im, float *output)
{
    float *outputptr = output;
    const float *realptr = re;
    const float *imagptr = im;
    float *endptr = output + FFT_BUFFER_SIZE / 2;

#ifdef DEBUG
    unsigned int i, j;
#endif

    while (outputptr <= endptr) {
        *outputptr = (*realptr * *realptr) + (*imagptr * *imagptr);
        outputptr++;
        realptr++;
        imagptr++;
    }
    /* Do divisions to keep the constant and highest frequency terms in scale
     * with the other terms. */
    *output /= 4;
    *endptr /= 4;

#ifdef DEBUG
    printf("Recalculated input:\n");
    for (i = 0; i < FFT_BUFFER_SIZE; i++) {
        float val_real = 0;
        float val_imag = 0;
        for (j = 0; j < FFT_BUFFER_SIZE; j++) {
            float fact_real = cos(-2 * j * i * PI / FFT_BUFFER_SIZE);
            float fact_imag = sin(-2 * j * i * PI / FFT_BUFFER_SIZE);
            val_real += fact_real * re[j] - fact_imag * im[j];
            val_imag += fact_real * im[j] + fact_imag * re[j];
        }
        printf("%5d = %8f + i * %8f\n", i,
               val_real / FFT_BUFFER_SIZE, val_imag / FFT_BUFFER_SIZE);
    }
    printf("\n");
#endif
}

/*
 * Actually perform the FFT
 */
static void
fft_calculate(float *re, float *im)
{
    unsigned int i, j, k;
    unsigned int exchanges;
    float fact_real, fact_imag;
    float tmp_real, tmp_imag;
    unsigned int factfact;

    /* Set up some variables to reduce calculation in the loops */
    exchanges = 1;
    factfact = FFT_BUFFER_SIZE / 2;

    /* Loop through the divide and conquer steps */
    for (i = FFT_BUFFER_SIZE_LOG; i != 0; i--) {
        /* In this step, we have 2 ^ (i - 1) exchange groups, each with
         * 2 ^ (FFT_BUFFER_SIZE_LOG - i) exchanges
         */
        /* Loop through the exchanges in a group */
        for (j = 0; j != exchanges; j++) {
            /* Work out factor for this exchange
             * factor ^ (exchanges) = -1
             * So, real = cos(j * PI / exchanges),
             *     imag = sin(j * PI / exchanges)
             */
            fact_real = costable[j * factfact];
            fact_imag = sintable[j * factfact];

            /* Loop through all the exchange groups */
            for (k = j; k < FFT_BUFFER_SIZE; k += exchanges << 1) {
                int k1 = k + exchanges;
                /* newval[k]  := val[k] + factor * val[k1]
                 * newval[k1] := val[k] - factor * val[k1]
                 **/
#ifdef DEBUG
                printf("%d %d %d\n", i, j, k);
                printf("Exchange %d with %d\n", k, k1);
                printf("Factor %9f + i * %8f\n", fact_real, fact_imag);
#endif
                /* FIXME - potential scope for more optimization here? */
                tmp_real = fact_real * re[k1] - fact_imag * im[k1];
                tmp_imag = fact_real * im[k1] + fact_imag * re[k1];
                re[k1] = re[k] - tmp_real;
                im[k1] = im[k] - tmp_imag;
                re[k] += tmp_real;
                im[k] += tmp_imag;
#ifdef DEBUG
                for (k1 = 0; k1 < FFT_BUFFER_SIZE; k1++) {
                    printf("%5d = %8f + i * %8f\n", k1, real[k1], imag[k1]);
                }
#endif
            }
        }
        exchanges <<= 1;
        factfact >>= 1;
    }
}

static int
reverseBits(unsigned int initial)
{
    unsigned int reversed = 0, loop;
    for (loop = 0; loop < FFT_BUFFER_SIZE_LOG; loop++) {
        reversed <<= 1;
        reversed += (initial & 1);
        initial >>= 1;
    }
    return reversed;
}