1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
|
/* fft.c: Iterative implementation of a FFT
* Copyright (C) 1999 Richard Boulton <richard@tartarus.org>
* Convolution stuff by Ralph Loader <suckfish@ihug.co.nz>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*/
/*
* TODO
* Remove compiling in of FFT_BUFFER_SIZE? (Might slow things down, but would
* be nice to be able to change size at runtime.)
* Finish making / checking thread-safety.
* More optimisations.
*/
#ifdef HAVE_CONFIG_H
# include "config.h"
#endif
#include "fft.h"
//#include <glib.h>
#include <stdlib.h>
#include <math.h>
#ifndef PI
#ifdef M_PI
#define PI M_PI
#else
#define PI 3.14159265358979323846 /* pi */
#endif
#endif
/* ########### */
/* # Structs # */
/* ########### */
struct _struct_fft_state {
/* Temporary data stores to perform FFT in. */
float real[FFT_BUFFER_SIZE];
float imag[FFT_BUFFER_SIZE];
};
/* ############################# */
/* # Local function prototypes # */
/* ############################# */
static void fft_prepare(const sound_sample * input, float *re, float *im);
static void fft_calculate(float *re, float *im);
static void fft_output(const float *re, const float *im, float *output);
static int reverseBits(unsigned int initial);
/* #################### */
/* # Global variables # */
/* #################### */
/* Table to speed up bit reverse copy */
static unsigned int bitReverse[FFT_BUFFER_SIZE];
/* The next two tables could be made to use less space in memory, since they
* overlap hugely, but hey. */
static float sintable[FFT_BUFFER_SIZE / 2];
static float costable[FFT_BUFFER_SIZE / 2];
/* ############################## */
/* # Externally called routines # */
/* ############################## */
/* --------- */
/* FFT stuff */
/* --------- */
/*
* Initialisation routine - sets up tables and space to work in.
* Returns a pointer to internal state, to be used when performing calls.
* On error, returns NULL.
* The pointer should be freed when it is finished with, by fft_close().
*/
fft_state *
fft_init(void)
{
fft_state *state;
unsigned int i;
state = (fft_state *) malloc(sizeof(fft_state));
if (!state)
return NULL;
for (i = 0; i < FFT_BUFFER_SIZE; i++) {
bitReverse[i] = reverseBits(i);
}
for (i = 0; i < FFT_BUFFER_SIZE / 2; i++) {
float j = 2 * PI * i / FFT_BUFFER_SIZE;
costable[i] = cos(j);
sintable[i] = sin(j);
}
return state;
}
/*
* Do all the steps of the FFT, taking as input sound data (as described in
* sound.h) and returning the intensities of each frequency as floats in the
* range 0 to ((FFT_BUFFER_SIZE / 2) * 32768) ^ 2
*
* FIXME - the above range assumes no frequencies present have an amplitude
* larger than that of the sample variation. But this is false: we could have
* a wave such that its maximums are always between samples, and it's just
* inside the representable range at the places samples get taken.
* Question: what _is_ the maximum value possible. Twice that value? Root
* two times that value? Hmmm. Think it depends on the frequency, too.
*
* The input array is assumed to have FFT_BUFFER_SIZE elements,
* and the output array is assumed to have (FFT_BUFFER_SIZE / 2 + 1) elements.
* state is a (non-NULL) pointer returned by fft_init.
*/
void
fft_perform(const sound_sample * input, float *output, fft_state * state)
{
/* Convert data from sound format to be ready for FFT */
fft_prepare(input, state->real, state->imag);
/* Do the actual FFT */
fft_calculate(state->real, state->imag);
/* Convert the FFT output into intensities */
fft_output(state->real, state->imag, output);
}
/*
* Free the state.
*/
void
fft_close(fft_state * state)
{
if (state)
free(state);
}
/* ########################### */
/* # Locally called routines # */
/* ########################### */
/*
* Prepare data to perform an FFT on
*/
static void
fft_prepare(const sound_sample * input, float *re, float *im)
{
unsigned int i;
float *realptr = re;
float *imagptr = im;
/* Get input, in reverse bit order */
for (i = 0; i < FFT_BUFFER_SIZE; i++) {
*realptr++ = input[bitReverse[i]];
*imagptr++ = 0;
}
}
/*
* Take result of an FFT and calculate the intensities of each frequency
* Note: only produces half as many data points as the input had.
* This is roughly a consequence of the Nyquist sampling theorm thingy.
* (FIXME - make this comment better, and helpful.)
*
* The two divisions by 4 are also a consequence of this: the contributions
* returned for each frequency are split into two parts, one at i in the
* table, and the other at FFT_BUFFER_SIZE - i, except for i = 0 and
* FFT_BUFFER_SIZE which would otherwise get float (and then 4* when squared)
* the contributions.
*/
static void
fft_output(const float *re, const float *im, float *output)
{
float *outputptr = output;
const float *realptr = re;
const float *imagptr = im;
float *endptr = output + FFT_BUFFER_SIZE / 2;
#ifdef DEBUG
unsigned int i, j;
#endif
while (outputptr <= endptr) {
*outputptr = (*realptr * *realptr) + (*imagptr * *imagptr);
outputptr++;
realptr++;
imagptr++;
}
/* Do divisions to keep the constant and highest frequency terms in scale
* with the other terms. */
*output /= 4;
*endptr /= 4;
#ifdef DEBUG
printf("Recalculated input:\n");
for (i = 0; i < FFT_BUFFER_SIZE; i++) {
float val_real = 0;
float val_imag = 0;
for (j = 0; j < FFT_BUFFER_SIZE; j++) {
float fact_real = cos(-2 * j * i * PI / FFT_BUFFER_SIZE);
float fact_imag = sin(-2 * j * i * PI / FFT_BUFFER_SIZE);
val_real += fact_real * re[j] - fact_imag * im[j];
val_imag += fact_real * im[j] + fact_imag * re[j];
}
printf("%5d = %8f + i * %8f\n", i,
val_real / FFT_BUFFER_SIZE, val_imag / FFT_BUFFER_SIZE);
}
printf("\n");
#endif
}
/*
* Actually perform the FFT
*/
static void
fft_calculate(float *re, float *im)
{
unsigned int i, j, k;
unsigned int exchanges;
float fact_real, fact_imag;
float tmp_real, tmp_imag;
unsigned int factfact;
/* Set up some variables to reduce calculation in the loops */
exchanges = 1;
factfact = FFT_BUFFER_SIZE / 2;
/* Loop through the divide and conquer steps */
for (i = FFT_BUFFER_SIZE_LOG; i != 0; i--) {
/* In this step, we have 2 ^ (i - 1) exchange groups, each with
* 2 ^ (FFT_BUFFER_SIZE_LOG - i) exchanges
*/
/* Loop through the exchanges in a group */
for (j = 0; j != exchanges; j++) {
/* Work out factor for this exchange
* factor ^ (exchanges) = -1
* So, real = cos(j * PI / exchanges),
* imag = sin(j * PI / exchanges)
*/
fact_real = costable[j * factfact];
fact_imag = sintable[j * factfact];
/* Loop through all the exchange groups */
for (k = j; k < FFT_BUFFER_SIZE; k += exchanges << 1) {
int k1 = k + exchanges;
/* newval[k] := val[k] + factor * val[k1]
* newval[k1] := val[k] - factor * val[k1]
**/
#ifdef DEBUG
printf("%d %d %d\n", i, j, k);
printf("Exchange %d with %d\n", k, k1);
printf("Factor %9f + i * %8f\n", fact_real, fact_imag);
#endif
/* FIXME - potential scope for more optimization here? */
tmp_real = fact_real * re[k1] - fact_imag * im[k1];
tmp_imag = fact_real * im[k1] + fact_imag * re[k1];
re[k1] = re[k] - tmp_real;
im[k1] = im[k] - tmp_imag;
re[k] += tmp_real;
im[k] += tmp_imag;
#ifdef DEBUG
for (k1 = 0; k1 < FFT_BUFFER_SIZE; k1++) {
printf("%5d = %8f + i * %8f\n", k1, real[k1], imag[k1]);
}
#endif
}
}
exchanges <<= 1;
factfact >>= 1;
}
}
static int
reverseBits(unsigned int initial)
{
unsigned int reversed = 0, loop;
for (loop = 0; loop < FFT_BUFFER_SIZE_LOG; loop++) {
reversed <<= 1;
reversed += (initial & 1);
initial >>= 1;
}
return reversed;
}
|